مقایسۀ مدلهای سری زمانی فصلی، دوخطی BL و غیرخطی آستانۀ SETAR در پیشبینی جریان ماهانۀ ورودی به مخزن سد مارون
Authors
Abstract:
در پژوهش حاضر از مدلهای سری زمانی فصلی SARIMA، هالت- وینترز، مدلهای دوخطی BL و مدل دورژیمی غیرخطی خودهمبستگی آستانۀ SETAR برای پیشبینی جریان ماهانۀ ورودی به مخزن سد مارون استفاده شده است. به این منظور، از دادههای ایستگاه آبسنجی ایدنک واقع در استان خوزستان با طول دورۀ آماری 34 سال طی سالهای 1361 تا 1394 استفاده شده است. از تبدیل لگاریتمی برای نرمالسازی دادههای شدت جریان ماهانۀ ایستگاه هیدرومتری ایدنک استفاده شد. همچنین، برای حذف مؤلفۀ فصلی دادههای ماهانه از روش تفاضلگیری بهره گرفته شد. از آزمون استقلال باقیماندههای مدل (لجونگ- باکس یا پورت مانتئو) و توابع خودهمبستگی و خودهمبستگی جزئی برای بررسی صحت (کیفیت برازش) مدلهای یادشده استفاده شد. درنهایت، مدلهای SARIMA(1,0,1)*(2,0,2)12، BL(2,1,1,1) و SETAR(2;7,3) با داشتن حداقل مقدار معیار آکائیک و شوارتز به عنوان مدلهای برتر انتخاب شدند. نتایج ارزیابی مدلهای برازشیافته نشان داد مدل دوخطی (BL) با مقادیر ضریب تعیین و ریشۀ میانگین مربعات خطا، بهترتیب برابر با 81/0 و 80/14 مترمکعب بر ثانیه، دقت قابل قبولی در پیشبینی جریان ماهانۀ رودخانه مارون دارد. با توجه به نتایج مشخص شد که با افرایش مرتبۀ خودهمبستگی غیر فصلی در مدلهای ساریما صحت مدل و عملکرد آنها در پیشبینی جریان ماهانه تضعیف میشود. همچنین، با بررسی نتایج بهدستآمده از مدلها مشخص شد که مدل هالت- وینترز با داشتن مقدار ضریب تعیین و ریشۀ میانگین بهترتیب برابر 56/0 و 10 مترمکعب بر ثانیه ضعیفترین عملکرد در پیشبینی جریان ماهانه حوضۀ مارون را دارد.
similar resources
مقایسه مدلهای خودهمبسته شبکه عصبی مصنوعی دینامیک و استاتیک در پیش بینی جریان ماهانه ورودی به مخزن سد دز
در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیشبینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدلهای استاتیک و دینامیک در شبکههای عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری میباشد. در این تحقیق آبدهی های ماهانه بین ...
full textبررسی دقت مدل مفهومی HMS-SMA و مدل دو خطی سری زمانی در پیش بینی رواناب روزانه مطالعه موردی: (حوضه مارون ایستگاه هیدرومتری ایدنک)
پیشبینی رواناب بهمنظور بهرهبرداری مؤثر از مخازن کنترل سیل و سامانههای سیل بند خاکی ضروری میباشد. پیشبینیها همچنین با برآورد زمان و محدوده خسارات مورد انتظار یا شرایط مخرب سیل، بهرهبرداری اضطراری را امکان پذیر میسازند. پیشبینیها بر مبنای شرایط هواشناسی و هیدرولوژیکی اخیردر حوضه هستندو ممکن است شرایط هواشناسی پیشبینیشده در آینده را نیز شامل شوند.اگرچه اکثر کاربردها در زمینه پیشبینی س...
full textهم انباشتگی در مدلهای سری زمانی فصلی
در این پایان نامه ابتدا به مرور مفاهیمی چون فرآیندهای تصادفی، سریهای زمانی مانا و نامانا، ریشه های واحد و آزمونهای ریشه واحد پرداخته و در ادامه به بیان مفهوم هم انباشتگی، مدلهای تصحیح خطا و آزمونهای مربوطه پرداخته و سپس ریشه های واحد و هم انباشتگی در سری های زمانی فصلی، برآورد مدل آنها و آزمونهای مربوطه را ارائه خواهیم داد.
15 صفحه اولمقایسه مدلهای خودهمبسته شبکه عصبی مصنوعی دینامیک و استاتیک در پیش بینی جریان ماهانه ورودی به مخزن سد دز
در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیشبینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل های استاتیک و دینامیک در شبکه های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می باشد. در این تحقیق آبدهی های ماهانه بین ...
full textمقایسه کارآیی مدلهای سری زمانی خطی و غیرخطی در شبیهسازی و پیشبینی تبخیر- تعرق مرجع
برآورد دقیق میزان تبخیر- تعرق مرجع (ET0) نقش بسیار مهمی در مدیریت منابع آب و بهینهسازی مصرف آب کشاورزی دارد. یکی از روشهای برآورد ET0 استفاده از مدلهای سری زمانی است. در این تحقیق، دقت و کارائی مدل خطی آرما (ARMA) و غیرخطی بیلینییر (BL) در شبیهسازی و پیشبینی ET0 در سه ایستگاه سینوپتیک واقع در شمال غرب کشور مورد مقایسه قرار گرفت. بدینمنظور، مقادیر ماهانه ET0از سال 1990 تا 2014 با استفاده ...
full textکاربرد روشهای سری زمانی، شبکه عصبی و رگرسیون در پیش بینی جریان ورودی به مخزن سد دز
امروزه یکی از مهمترین مسائل در برنامه ریزی و مدیریت منابع آب، پیش بینی میزان جریان رودخانه در نقطه مشخصی از آن می باشد. شبیه سازی و مدیریت آبهای سطحی می تواند کمک شایانی در مدیریت آب کشاورزی، سیلاب و خشکسالی داشته باشد. آگاهی داشتن از حجم جریان ورودی به مخازن سدها در دوره های زمانی آینده، از مهمترین و ارزشمندترین اطلاعاتی است که به سیاستگذاری برنامه ریزان در مدیریت و تخصیص منابع آب کمک می کند. ...
My Resources
Journal title
volume 6 issue 4
pages 887- 899
publication date 2019-12-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023